
hroughout the fifty-odd years of software development, the industry
has gone through at least four generations of programming languages
and three major development paradigms. We have held countless sem-
inars on how to develop software correctly, forced many courses into

undergraduate degree programs, and introduced standards in our organizations
that require specific technologies. Still, we have not improved our ability to suc-
cessfully, consistently move from idea to product. In fact, recent studies document
that, while the failure rate for software development efforts has improved in recent
years, the number of projects experiencing severe problems has risen almost 50
percent.1 There is no magic in managing software development successfully, but a
number of issues related to software development make it unique.

John S. Reel, Trident Data Systems

Critical Success
Factors In Software
Projects

S of t ware pro jec ts a re s t i l l l a te, over budget, and
unpredic tab le. S omet imes the ent i re pro jec t fa i l s b e fore
ever de l iver ing an appl i cat ion . Th is c lear, commonsense
rev iew of fundamenta l pro jec t management techniques
reminds us that we s t i l l have a long way to go.

T

1 8 I E E E S o f t w a r e M a y / J u n e 1 9 9 9 0 7 4 0 - 7 4 5 9 / 9 9 / $ 1 0 . 0 0 © 1 9 9 9 I E E E

MANAGING COMPLEXITY

Several characteristics of software-based en-
deavors complicate management. First, software-
based systems are exceptionally complex. In fact,
many agree that “the basic problem of computing
is the mastery of complexity.”2 Because software de-
velopers must deal with complex problems, they are
generally very intelligent and complex individuals,
which also complicates the management formula.
Add the fact that developers are trying to hit a mov-
ing target—user requirements—and you get a
volatile mixture of management issues.

These and many other influ-
ences contribute to a fantastically
high failure rate among software
development projects. The Chaos
study, published by the Standish
Group, found that 26 percent of
all software projects fail (down
from 40 percent in 1997), but 46 percent experience
cost and schedule overruns or significantly reduced
functionality (up from 33 percent in 1997).1 The
study also shows that the completion rate has im-
proved because companies have trended towards
smaller, more manageable projects—not because
the management techniques have improved. Can
you imagine a construction firm completing only 74
percent of its buildings and completing only 54 per-
cent of the buildings within schedule and budget?
To change this trend, we must place special empha-
sis on certain factors of the management process.

You may think the answers lie in elaborate analy-
sis methodologies, highly advanced configuration
management techniques, or the perfect develop-
ment language. Those elements of the technology
landscape are as important as highly scientific and
analytical research in analysis and design method-
ologies, project management, and software quality.
However, blueprints of the latest train technology
didn’t improve life in the Wild West until rail com-
panies invested in the fundamental aspects of train
transportation—tracks and depots. Likewise in soft-
ware, more “advanced”technologies are far less crit-
ical to improving practice than embracing what I be-
lieve are the five essential factors to managing a
successful software project:

1. Start on the right foot.
2. Maintain momentum.
3. Track progress.
4. Make smart decisions.
5. Institutionalize post-mortem analyses.

Granted, even a detailed review of these may
leave you wondering what’s new here. Not much—
this is common-sense, basic management stuff. And
yet these principles are not commonly employed. If
they were, we would not see such high failure rates.

START ON THE RIGHT FOOT

It is difficult to call any of these factors most im-
portant, since they are all critical to the success of
large development efforts. However, getting a pro-
ject set up and started properly certainly leads this

class of factors. Just as it is difficult to grow strong
plants in weak soil, it is almost impossible to suc-
cessfully lead a development effort that is set up im-
properly. Tom Field analyzed pitfalls in software de-
velopment efforts and gave 10 signs of IS project
failures—at least seven of which are fully deter-
mined before a design is developed or a line of code
is written.3 Therefore, 70 percent of the dooming
acts occur before a build even starts.

Here are 10 signs of IS project failure:3

1. Project managers don’t understand users’
needs.

2. The project’s scope is ill-defined.
3. Project changes are managed poorly.
4. The chosen technology changes.
5. Business needs change.
6. Deadlines are unrealistic.
7. Users are resistant.
8. Sponsorship is lost.
9. The project lacks people with appropriate

skills.
10. Managers ignore best practices and lessons

learned.
Given this information, what can we do to get

projects off to a successful start?

Set realistic objectives and expectations—
for everyone

The first objective in getting a project off to a
good start is to get everyone on the same wave-
length. Management, users, developers, and
designers must all have realistic expectations. In

M a y / J u n e 1 9 9 9 I E E E S o f t w a r e 1 9

At least seven of 10 signs of IS project failures
are determined before a design is developed
or a line of code is written.

case your customers haven’t heard, remind them
routinely that this system will not solve all of their
problems and it will probably create new issues. The
new system should cost-effectively solve more prob-
lems than it creates. The developers must also un-
derstand that the customers do not know exactly
what they want, how they want it, or how it will help

them. Often, they don’t even know how much they
can spend. Everyone has to come to the table with
their eyes open, willing to cooperate and listen. To
avoid later heartache, pay strict attention to the
commitments made by both sides.

Build the right team
Next, you must put together the right team.

First ensure that you have enough resources to get
the job done. If you do not get commitments for
resources up front, the effort is doomed. If man-
agement is not excited enough about the effort
to give it enough resources, you may not have the
support necessary for success. Remember, too,
that you will likely need more resources than you
think. We are all inherently optimistic, so guard
your personnel projections and err on the high
side from the start.

Building the right team means getting good
people. This is hard because companies usually want
to place personnel moving off other efforts.
Sometimes these people are good resources, but
not always. However, also recognize that you do not
need, or want, all of the very best designers and de-
velopers. In my experience, staffing around 20 per-
cent of the team with the best available works well.
This figure is loosely supported in Fred Brooks’essay
“The Surgical Team.”4 His team of about 10 people
includes two who are real experts (the Chief
Programmer and the Language Lawyer). Having too
many stars creates ego issues and distractions, while
not having enough can leave the team struggling
with small problems.

The rest of the team should be good, solid de-
velopers with compatible personalities and work
habits. The more advanced team members can step
ahead into uncharted waters, develop the most crit-
ical algorithms and applications, and provide
technical mentoring to the rest of the team.

The most critical element in selecting people is
creating an environment in which they can excel, and
that lets you focus more on technology than team
dynamics. You don’t want a team of clones, but you
do want people who are compatible with one an-
other and with the company and team environment
you are striving to establish. For example, a married-

with-kids, laid-back, nine-to-five
developer might not work well on
a team of young, single, forceful
seven-to-eleven developers. This
doesn’t mean the former is any
less qualified or productive.

Actually, that laid-back developer may produce bet-
ter code and be more productive than the rest of the
group. If you think that first person brings a calming,
focused influence without either “side” becoming
overly frustrated, maybe it is a good fit after all. At
any rate, you must take these factors into consider-
ation when building your team.

Wherever possible, and it usually is possible, in-
volve customers and users in the development. Not
only does this help build higher levels of trust be-
tween developers and users, it also places domain
experts within arm’s reach of the developers
throughout development. This increases the chance
that you will develop a product that meets the user
requirements.

Give the team what they think they need
Once you have built a strong team, you must next

provide it with an environment that encourages pro-
ductivity and minimizes distractions. First, do your
best to arrange quiet, productive office spaces. This
is often impossible given most corporate realities,
but a comfortable office setting can yield dramatic
results. Highly productive environments contain
white boards, meeting areas (formal and informal),
private office areas, and flexible, modern lab facili-
ties. Add comfort elements such as stereos, light dim-
mers, coffee machines, and comfortable chairs; you
will create an environment where people can focus
on their work and forget the rest of the world.

Once you have a team with a productive office
space, you need the proper equipment. Do not for
any reason scrimp on equipment. The difference be-
tween state-of-the-art machines and adequate de-
velopment systems is less than $1,000. You will prob-
ably spend at least $100,000 per year to keep a good
developer, including salary, bonuses, benefits,
training, and other related expenses. That extra
$1,000 amortized over two years represents less

2 0 I E E E S o f t w a r e M a y / J u n e 1 9 9 9

By the time you figure out you have a quality
problem, it is probably too late to fix it.

than 1/2 percent of the employee cost.
Finally, your team needs tools. Get good, proven

tools from stable companies. Nothing will derail a pro-
ject faster than using unsupported tools. The team
also needs training on those tools; losing files and
folders from ignorance and inexperience is painful
and costly. The term tool does not just mean com-
piler. You also need analysis and design, configura-
tion management, testing, back-up management,
document production, graphics manipulation, and
troubleshooting tools. This is, however, an area where
going first-class does not necessarily mean spending
the most money. Shop carefully, review a lot of op-
tions, and involve the entire team in the decision.

MAINTAIN THE MOMENTUM

By now, you have your development team en-
ergized with strong co-workers, a great working
environment, and some high-end hardware.
Congratulations, you have momentum. The next
critical factor is maintaining and increasing this
momentum. Building momentum initially is easy,
but rebuilding it is dreadfully difficult. Momentum
changes often during the course of a develop-
ment effort. These changes add
up quickly, so it is crucial to
quickly offset the negative shifts
with positive ones.

You should focus on three key
items to maintain or rebuild team
momentum:

♦ Attrition—keep it low.
♦ Quality—monitor it early on and establish an

expectation of excellence.
♦ Management—manage the product more

than the people.

Attrition
Attrition is a constant problem in the software in-

dustry. It can spell disaster for a mid-stream software
project, because replacement personnel must
quickly get up to speed on software that is not com-
plete, not tested, and probably not well-docu-
mented yet. A tremendous amount of knowledge
walks out the door with the person leaving, and
those left behind have a scapegoat for every prob-
lem from then on. Also, in this tight labor market,
the lag time between when a person quits and
when a replacement is hired can wreak havoc with
even the most pessimistic schedules.

Quality
You cannot go back and add quality. By the time

you figure out you have a quality problem, it is prob-
ably too late to fix it. Establish procedures and ex-
pectations for high levels of quality before any other
development begins and hire developers proven to
develop high-quality code. Have the developers par-
ticipate in regular peer-level code reviews and ex-
ternal reviews.

Invariably, when a project is cruising along, every-
body is excited, the status reports look great, and
the GUI is awesome, everything goes wrong. There
may be a bad test report, a failed demo, or a small
change request from the customer that becomes
the pebble that starts an avalanche. You fix one bug,
or make one change, and cause two more. Suddenly,
the development team that was making fantastic
progress is mired in repairing and modifying code
that has been in the bank for months.

Management
Manage your product more than your personnel.

After all, the product is what you are selling. So, if your
corporate culture can handle it, don’t worry about
dress codes or fixed work hours. Relax and let people
deliver things at the last minute. Then critique their

products. If the products are not acceptable, you can
start working with the individuals to improve their
products. The goal here is to not make individual is-
sues team problems. Just because one or two peo-
ple like to come in at 10:00 a.m. and work until 5:00
p.m., abusing the flexibility you give, doesn’t mean
you should dampen the environment for the whole
team. Too often, project leads avoid confronting the
individuals and merely “fix” the problem by setting
arbitrary team rules. Soon, everyone is griping about
deviant co-workers and the strict management.
Those are the sounds of momentum slipping away.
Roll a few of these decisions together, and the team
is soon focused more on avoiding the rules or tattling
on offenders than on producing a quality product.

When you do have a legitimate personnel prob-
lem, deal with it quickly. If you must let someone
go, do it quickly and then meet with your team to
explain what happened. As long as you are being

M a y / J u n e 1 9 9 9 I E E E S o f t w a r e 2 1

Project leaders often avoid confronting
individuals and merely “fix” a problem
by setting arbitrary team rules.

fair, these experiences will contribute to the team’s
cohesiveness and allow them to rebuild momen-
tum quickly.

TRACK PROGRESS

Consider the intangible nature of software com-
pared to traditional brick-and-mortar construction.
Construction results in a physical manifestation of
a conceptual model—the blueprint becomes a
building that people can touch and see. They can
also touch and see all of the little pieces as they are

being nailed, welded, glued, or screwed to the
framework during construction. Software develop-
ment begins as a conceptual model and results in
an application, so there is no physical manifestation
of software that can be touched and measured, es-
pecially during construction.

A large problem in managing software develop-
ment is figuring where you are in your schedule.
How complete is a module? How long will it take to
finish modules X, Y, and Z? These are hard questions
to answer, but they must be addressed. If you don’t
know where you are in relation to the schedule, you
cannot adjust and tweak to bring things back on
track. Many methodologies exist for tracking
progress; select one at the right level of detail for
your effort, and use it religiously.

MAKE SMART DECISIONS

Making smart decisions often separates suc-
cessful project leaders from failures. It shouldn’t be
hard to identify a bad decision before you make it.
Choosing to rewrite a few of Microsoft’s dynamically
linked libraries to accommodate your design
choices, for example, is a poor decision. Yet I have
seen at least four major projects attempt such in-
sanity. If your application needs to communicate
across a serial connection, do you buy a commercial
library of communications routines or develop your
own from scratch? If you build it from scratch, you
can then implement your own personally designed

protocol. Bad call. Always use commercial libraries
when available, and never try to create a new com-
munications protocol. At best, it will cost you a for-
tune. At worst, it will sink your project.

People also consistently make bad decisions in
selecting technologies. For example, how many peo-
ple chose to develop applications for the Next plat-
form? Most never finished their applications before
that platform went away. When you pick a funda-
mental technology, whether a database engine, op-
erating system, or communications protocol, you
must do a business and a technical analysis. If the
technology isn’t catching market share and if a

healthy company doesn’t support it,
you are building your project on a
sandy foundation.

Because your foresight is fallible,
use your design to insulate yourself
from the underlying technology.
Encapsulate the interface to new or

niche technologies as much as possible. Think about
which technologies will be prone to change over
your product’s lifetime and design your application
to insulate—to a practical level—your code from
those changes.

You will have many opportunities to make good
decisions as you negotiate the customer’s require-
ments. Strive to move the requirements from the
complicated, “never been done before” category to
the “been there, done that” category. Often, users
request things that are marginally valuable without
understanding the complexity. Explain the ramifi-
cations of complicated requirements and require-
ments changes in terms of cost and schedule. Help
them help you.

POST-MORTEM ANALYSIS

Few companies institutionalize a process for
learning from their mistakes. If you do not take time
to figure out what happened during a project, both
the good and the bad, you are doomed to repeat it.

What can you learn from a post-mortem analy-
sis? First, you learn why your schedule estimates
were off. Compensating for those factors in the next
project will dramatically improve your estimating
techniques. A post-mortem will also help you de-
velop a profile for how your team and company de-
velop software systems. Most companies and teams
have personalities that strongly impact the devel-
opment cycle. As you go through post-mortem

2 2 I E E E S o f t w a r e M a y / J u n e 1 9 9 9

If you don’t take time to figure out what
happened during a project, both the good

and the bad, you’re doomed to repeat it.

analyses, these personalities emerge as patterns
rather than as isolated incidents. Knowing the pat-
terns allows you to circumvent or at least schedule
for them on your next project.

In his book Managing Software Development
Projects, Neal Whitten offers six steps for executing
a post-mortem review of a project:5

♦ Declare the intent: Announce at the beginning
of the project that you will hold the review. Also
define what topics will be addressed, and set the
procedures.

♦ Select the participants: Choose representa-
tives from each major group associated with the pro-
ject. To ensure an objective review, management
should not participate directly.

♦ Prepare the review: After the project is com-
plete, assign review participants to gather data. This
should include metrics, staffing, inter- and intra-
group communications, quality, and process.

♦ Conduct the review: The actual review should
not require more than a few days of meetings. All
participants should start by presenting their find-
ings and experiences with the project. Next, the
group prepares two lists: things that went right and
things that went wrong. Participants can then begin
to work on what went wrong to develop solutions.

♦ Present the results: The participants should
present the results to the development team and
executive leadership.

♦ Adopt the recommendations: The company
must implement the recommendations on upcom-
ing projects. Without this follow-through, the
process yields a marginal benefit.

The premise and benefit of performing post-
mortem analyses are validated by the process im-
provement movement inspired by W. Edwards
Deming during the late 1980s and early 1990s.
He suggests objectively measuring a given
process and using those measurements to eval-
uate the influence of changes to the processes.
Only by measuring a system and analyzing those
incremental measurements can you truly improve
the system.6

Guess what? Your company’s software methods
and habits for developing software constitute a sys-
tem. It is far less defined than an assembly line, but it
is still a system. The post-mortem analysis allows you
to modify that system for the next “production run.”

These five critical factors hold true regardless of
the design and development methodology,

the implementation language, or the application

domain. However, this is not an exhaustive list—
many other factors influence the successful man-
agement of a software development effort. But if
you master these five, you greatly increase the odds
of completing your project on time and within bud-
get. Just as important, you increase your chances of
actually delivering something your users want. ❖

REFERENCES
1. R. Whiting, “News Front: Development in Disarray,” Software

Magazine, Sept. 1998, p. 20.

2. J. Martin and C. McClure, Structured Techniques for Computing,
Prentice Hall, Upper Saddle River, N.J.,1988.

3. T. Field, “When BAD Things Happen to GOOD Projects,” CIO, 15
Oct. 1997, pp. 55-62.

4. F.P. Brooks, Jr., The Mythical Man-Month: Essays on Software
Engineering, Addison Wesley Longman, Reading, Mass., 1995.

5. N. Whitten, Managing Software Development Projects, John
Wiley & Sons, New York, 1995.

6. R. Aguayo, Dr. Deming: The American Who Taught the Japanese
About Quality, Fireside Books, New York, 1990.

M a y / J u n e 1 9 9 9 I E E E S o f t w a r e 2 3

John S. Reel is the chief technology offi-
cer of Trident Data Systems, an informa-
tion protection and computer network-
ing company. He is a co-inventor of
patented COMSEC technology. He
received a BS in computer science from
the University of Texas at Tyler and a PhD
in computer science from Century

University. He also worked for the US Department of Defense
in systems support, software development, and management.

He is a member of the IEEE, the IEEE Computer Society,
Information Systems Security Association, and the Armed
Forces Communications and Electronics Association.

About the Author

Readers may contact Reel at 6615 Gin Road, Marion, Texas
78124; e-mail jreel@tds.com.

